设 $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right),$ $ B=\left(\begin{array}{ccc}1 & 2 & 3 \\ -1 & -2 & 4 \\ 0 & 5 & 1\end{array}\right),$ 则 $3 A B-2 A =$( ).
A. $\left(\begin{array}{ccc}5 & 4 & 7 \\ -4 & -8 & -10 \\ -2 & -13 & 1\end{array}\right)$
B. $\left(\begin{array}{ccc}-2 & 13 & 22 \\ -2 & -17 & 20 \\ 4 & 29 & -2\end{array}\right)$
C. $\left(\begin{array}{ccc}0 & 6 & 9 \\ -3 & 9 & -12 \\ 0 & -15 & 0\end{array}\right)$
D. $\left(\begin{array}{ccc}3 & 6 & 9 \\ -2 & -6 & -12 \\ 0 & -15 & 3\end{array}\right)$
查看答案
设 $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right)$,$ B=\left(\begin{array}{ccc}1 & 2 & 3 \\ -1 & -2 & 4 \\ 0 & 5 & 1\end{array}\right),$ 则 $A^T B=$( ).
A. $\left(\begin{array}{ccc}1 & 2 & 3 \\ -1 & -2 & -4 \\ 0 & 5 & 1\end{array}\right)$
B. $\left(\begin{array}{ccc}0 & 0 & 2 \\ 5 & -5 & 9 \\ 2 & 9 & 0\end{array}\right)$
C. $\left(\begin{array}{ccc}0 & 5 & 8 \\ 0 & -5 & 6 \\ 2 & 9 & 0\end{array}\right)$
D. $\left(\begin{array}{ccc}6 & 1 & 6 \\ 0 & -7 & 4 \\ 2 & 5 & -4\end{array}\right)$
三重积分 $\displaystyle I=\iiint_\Omega(x^2+y^2+z^2)dv$,其中 $\Omega$ 是由 $z^2=x^2+y^2$ 与 $z=-1$ 围成的区域,则 $I$ 可化为
A. $\int_0^{2\pi} d\theta\int_0^1\rho d\rho\int_0^\rho (\rho^2+z^2)dz$
B. $\int_0^{2\pi} d\theta\int_0^1\rho d\rho\int_{\rho} ^{-1}(\rho^2+z^2)dz$
C. $4\int_0^{\frac{\pi}{2}}d\theta\int_0^1\rho d\rho\int_{-1}^{-\rho}(\rho^2+z^2)dz$
D. $4\int_0^{\frac{\pi}{2}}d\theta\int_0^1\rho d\rho\int_\rho^{-1}(\rho^2+z^2)dz$
下列说法中正确的是
A. $f(x,y)$在点$(x,y)$处可微的充分必要条件是$f(x,y)$在点$(x,y)$处存在偏导数
B. $f_x’(x,y)$及$f_y’(x,y)$存在是$f(x,y)$在点$(x,y)$处可微的必要条件
C. $f(x,y)$在点$(x,y)$处连续且偏导数存在是$f(x,y)$在点$(x,y)$处可微的充分条件
D. $f(x,y)$在点$(x,y)$处可微,则$f_x’(x,y)$及$f_y’(x,y)$在点$(x,y)$处连续
函数$z=e^{xy}$在点$(3,-1)$处的全微分为$\displaystyle dz|_{(3,-1)}= $
A. $-e^{-3}dx+3e^{-3}dy$
B. $e^{-3}dx-3e^{-3}dy$
C. $3e^{-3}dx-e^{-3}dy$
D. $-3e^{-3}dx+e^{-3}dy$