函数$z=e^{xy}$在点$(3,-1)$处的全微分为$\displaystyle dz|_{(3,-1)}= $
A. $-e^{-3}dx+3e^{-3}dy$
B. $e^{-3}dx-3e^{-3}dy$
C. $3e^{-3}dx-e^{-3}dy$
D. $-3e^{-3}dx+e^{-3}dy$
查看答案
曲面$x^2+2y^2+3z^2=6$在点$(1,1,1)$处的切平面方程为
A. $\displaystyle\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{3}$
B. $\displaystyle x+2y+3z=6$
C. $\displaystyle\frac{x-1}{3}=\frac{y-1}{2}=\frac{z-1}{1}$
D. $\displaystyle 3x+2y+z=6$
平面$x-y+2z-6=0$与$2x+y+z-5=0$的夹角为
A. $0$
B. $\displaystyle \frac{\pi}{4}$
C. $\displaystyle \frac{\pi}{3}$
D. $\displaystyle \frac{\pi}{2}$
$\int_{1}^{2} x^{3} d x$
A. 1
B. 2
C. 3
D. 4
设$u=x^3-xy^2-z$,则$u$在点$(1,1,0)$处的梯度$gradu|_{(1,1,0)}=$
A. $2\vec{i}+2\vec{j}-\vec{k}$
B. $2\vec{i}+\vec{j}$
C. $2\vec{i}-2\vec{j}-\vec{k}$
D. $2\vec{i}-\vec{k}$