题目内容

设\[f(x) = \left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}&x\\ {{a_{21}}}&{{a_{22}}}&x&{{a_{24}}}\\ {{a_{31}}}&x&{{a_{33}}}&{{a_{34}}}\\ x&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right|\],则多项式`\f(x)`中`\x^3`的系数为( )

A. 0
B. 1
C. -1
D. 2

查看答案
更多问题

设有行列式\[\left| {\begin{array}{*{20}{c}} x&2&3\\ { - 1}&x&0\\ 0&x&1 \end{array}} \right| = 0\],则`\x=`( )

A. 1,-2
B. -1,2
C. 1,2
D. 0,1

3421的逆序数是( )

A. 3
B. 4
C. 5
D. 6

设`n`阶矩阵`A`的行列式为`a`,且` A^**`为的` A`伴随矩阵,若` A `有一个特征值为` \lambda `,则`(A^**)^2 + E`必有一个特征值为( )

A. `a^2/\lambda^2+1`;
B. `\lambda^2/a^2+1`;
C. `a^2/\lambda^2+E`;
D. `\lambda^2/a^2+E`。

下列各组矩阵中,两个矩阵互相相似的是( )

A. \[ \left( {\begin{array}{*20{c}} 1 & 1\\0 & 1 \end{array}} \right) , \left( {\begin{array}{*20{c}} 1 & 0\\0 & 1 \end{array}} \right); \]
B. \[ \left( {\begin{array}{*20{c}} 1 & 0\\0 & 2 \end{array}} \right) , \left( {\begin{array}{*20{c}} 1 & 1\\0 & 2 \end{array}} \right); \]
C. \[ \left( {\begin{array}{*20{c}} 1 & 1\\1 & 1 \end{array}} \right) , \left( {\begin{array}{*20{c}} 2 & 1\\0 & 2 \end{array}} \right); \]
D. \[ \left( {\begin{array}{*20{c}} 1 & 2\\0 & 1 \end{array}} \right) , \left( {\begin{array}{*20{c}} 1 & 0\\0 & 2 \end{array}} \right). \]

答案查题题库