题目内容

矩阵方程: $\left(\begin{array}{ccc}0&1&0\\1&0&0\\0&0&1\end{array}\right)$$X$$\left(\begin{array}{ccc}1&0&0\\0&0&1\\0&1&0\end{array}\right)$$=\left(\begin{array}{ccc}1&-4&3\\2&0&-1\\1&-2&0\end{array}\right)$, 则 $X=$( ).

A. $\left(\begin{array}{ccc}2&0&-1\\1&-4&3\\1&-2&0\end{array}\right)$
B. $\left(\begin{array}{ccc}1&3&-4\\2&-1&0\\1&0&-2\end{array}\right)$
C. $\left(\begin{array}{ccc}1&-4&3\\2&0&-1\\1&-2&0\end{array}\right)$
D. $\left(\begin{array}{ccc}2&-1&0\\1&3&-4\\1&0&-2\end{array}\right)$

查看答案
更多问题

若 $n$ 阶方阵 $A$ 满足方程 $A^2+2A+3E=0$,则 $A^{-1}=$( ).

A. $\displaystyle\frac1{3}(A+2E)$
B. $\displaystyle-\frac1{3}(A+2E)$
C. $\displaystyle\frac1{3}(A+2)$
D. $\displaystyle\frac1{3}(A-2E)$

设 $A^3=E$,则 $A^{-1}=$( ).

A. $A$
B. $A^2$
C. $A^3$
D. $A+E$

设 $A=\left(\begin{array}{ccc}3&0&0\\0&1&0\\0&0&4\end{array}\right)$,则 $A^n=$( ).

A. $\left(\begin{array}{ccc}3^n&0&0\\0&1&0\\0&0&4^n\end{array}\right)$
B. $\left(\begin{array}{ccc}4^n&0&0\\0&1&0\\0&0&3^n\end{array}\right)$

$\left(\begin{array}{c}2\\1\\3\end{array}\right)$ $(-1,2)=$( ).

A. $\left(\begin{array}{ccc}-2&-1&-3\\4&2&6\end{array}\right)$
B. $\left(\begin{array}{cc}-2&4\\-1&2\\-3&6\end{array}\right)$

答案查题题库