(10). 设二维随机变量 \( (X,Y) \) 具有密度函数,则 \( X \) 的边缘密度为( )。 \[\qquad\qquad\qquad f(x,y)=\left\{ {{\begin{array}{ll} {\frac{9y^2}{x},} & {0< y< x,0< x< 1} \\ {0,} & \mbox{其他} \\ \end{array} }} \right. \]
A. \( f_X (x)=\left\{ {{\begin{array}{ll} {x,} & {0< x< 1} \\ {0,} & \mbox{其他} \\ \end{array} }} \right. \)
B. \( f_X (x)=\left\{ {{\begin{array}{ll} {2x,} & {0< x< 1} \\ {0,} & \mbox{其他} \\ \end{array} }} \right. \)
C. \( f_X (x)=\left\{ {{\begin{array}{ll} {3x^2,} & {0< x< 1} \\ {0,} & \mbox{其他} \\ \end{array} }} \right. \)
D. \( f_X (x)=\left\{ {{\begin{array}{ll} {4x^3,} & {0< x< 1} \\ {0,} & \mbox{其他} \\ \end{array} }} \right. \)
(9). 设二维随机变量 \( (X,Y) \) 具有密度函数,则 \( Y \) 的边缘密度为( )。 \[\qquad\qquad\qquad f(x,y)=\left\{ {{\begin{array}{*{20}c} {\frac{9y^2}{x},} & {0< y< x,0< x< 1} \\ {0,} & \mbox{其他} \\ \end{array} }} \right. \]
A. \( f_Y (y)=\left\{ {{\begin{array}{ll} {-9y^2\ln y,} & {0< y< 1} \\ {0,} & \mbox{其他} \\ \end{array} }} \right. \)
B. \( f_Y (y)=\left\{ {{\begin{array}{ll} {9y^2\ln y,} & {0< y< 1} \\ {0,} & \mbox{其他} \\ \end{array} }} \right. \)
C. \( f_Y (y)=\left\{ {{\begin{array}{ll} {3y^2,} & {0< y< 1} \\ {0,} & \mbox{其他} \\ \end{array} }} \right. \)
D. \( f_Y (y)=\left\{ {{\begin{array}{ll} {-3y^2,} & {0< y< 1} \\ {0,} & \mbox{其他} \\ \end{array} }} \right. \)
(8). 设相互独立的两个随机变量 \( X,Y \) 各自的分布律分别为则 \( P\{X+Y=2\} \) 等于( )。 \[\qquad\qquad\qquad {\begin{array}{c|cccc} X & 0 & 1 & 2 & 3 \\\hline P & {\frac{1}{2}} & {\frac{1}{4}} & {\frac{1}{8}} & {\frac{1}{8}} \\ \end{array} }\quad \quad \quad {\begin{array}{c|ccc} Y & {-1} & 0 & 1 \\\hline P & {\frac{1}{3}} & {\frac{1}{3}} & {\frac{1}{3}} \end{array} } \]
A. \( \frac{1}{12} \)
B. \( \frac{1}{8} \)
C. \( \frac{1}{6} \)
D. \( \frac{1}{2} \)
(6). 设 \( X \) 和 \( Y \) 是两个随机变量,且则 \( P\{\max \{X,Y\}\ge 0\} \) 等于( )。 \[\qquad\qquad\qquad P\{X\ge 0,Y\ge 0\}=\frac{3}{7},P\{X\ge 0\}=P\{Y\ge 0\}=\frac{4}{7} \]
A. \( 1 \)
B. \( \frac{3}{7} \)
C. \( \frac{5}{7} \)
D. \( 0 \)