题目内容

设`\A^**`为`\n`阶方阵`\A`的伴随阵,`\|A|=2`,则`\|2A^**A|` ( )

A. `\4^{n-1}`
B. `\4^{n+1}`
C. `\4^n`
D. `\2^n`

查看答案
更多问题

矩阵\[A = \left[ {\begin{array}{*{20}{c}} 2&0&0&0\\ 0&3&0&0\\ 0&0&0&2\\ 0&0&4&0 \end{array}} \right]\]的逆矩阵为 ( )

A. \[\left[{\begin{array}{*{20}{c}}{\frac{1}{2}}&0&0&0\\0&{\frac{1}{3}}&0&0\\0&0&0&{\frac{1}{4}}\\0&0&{\frac{1}{3}}&0\end{array}} \right]\]
B. \[\left[{\begin{array}{*{20}{c}}{\frac{1}{2}}&0&0&0\\0&{\frac{1}{2}}&0&0\\0&0&0&{\frac{1}{4}}\\0&0&{\frac{1}{3}}&0\end{array}} \right]\]
C. \[\left[{\begin{array}{*{20}{c}}{\frac{1}{2}}&0&0&0\\0&{\frac{1}{4}}&0&0\\0&0&0&{\frac{1}{3}}\\0&0&{\frac{1}{2}}&0\end{array}} \right]\]
D. \[\left[{\begin{array}{*{20}{c}}{\frac{1}{2}}&0&0&0\\0&{\frac{1}{3}}&0&0\\0&0&0&{\frac{1}{4}}\\0&0&{\frac{1}{2}}&0\end{array}} \right]\]

设\[A = \left[ {\begin{array}{*{20}{c}} 1&0&1\\ 0&2&0\\ 1&0&1 \end{array}} \right]\],若三阶矩阵`\B`满足关系`\AB + E = A^2 + B`,则`\B`的第一行的行为 ( )

A. `\(1,2,0)`
B. `\(2,1,0)`
C. `\(1,0,2)`
D. `\(2,0,1)`

矩阵\[A = \left[ {\begin{array}{*{20}{c}} 1&1&{ - 1}\\ { - 1}&1&1\\ 1&{ - 1}&1 \end{array}} \right]\] ,矩阵`\X`满足`\A^ ** X = A^{ - 1} + 2X`,其中`\A^**`是`\A`的伴随矩阵,则`\X=` ( )

A. \[\frac{1}{2}\left[ {\begin{array}{*{20}{c}}1&1&0\\0&1&1\\1&0&1\end{array}} \right]\]
B. \[\frac{1}{4}\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&1\\0&1&1\end{array}} \right]\]
C. \[\frac{1}{4}\left[ {\begin{array}{*{20}{c}}1&1&0\\0&1&1\\1&0&1\end{array}} \right]\]
D. \[\frac{1}{2}\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&1\\0&1&1\end{array}} \right]\]

设`\A,B`均为`\n`阶方阵,`\A \ne 0`,且`\AB = 0`,则下述结论必成立的是 ( )

A. \[BA = 0\]
B. \[B = 0\]
C. \[(A + B)(A - B) = {A^2} - {B^2}\]
D. \[{(A - B)^2} = {A^2} - BA + {B^2}\]

答案查题题库