矩阵\[A = \left[ {\begin{array}{*{20}{c}} 1&1&{ - 1}\\ { - 1}&1&1\\ 1&{ - 1}&1 \end{array}} \right]\] ,矩阵`\X`满足`\A^ ** X = A^{ - 1} + 2X`,其中`\A^**`是`\A`的伴随矩阵,则`\X=` ( )
A. \[\frac{1}{2}\left[ {\begin{array}{*{20}{c}}1&1&0\\0&1&1\\1&0&1\end{array}} \right]\]
B. \[\frac{1}{4}\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&1\\0&1&1\end{array}} \right]\]
C. \[\frac{1}{4}\left[ {\begin{array}{*{20}{c}}1&1&0\\0&1&1\\1&0&1\end{array}} \right]\]
D. \[\frac{1}{2}\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&1\\0&1&1\end{array}} \right]\]
查看答案
设`\A,B`均为`\n`阶方阵,`\A \ne 0`,且`\AB = 0`,则下述结论必成立的是 ( )
A. \[BA = 0\]
B. \[B = 0\]
C. \[(A + B)(A - B) = {A^2} - {B^2}\]
D. \[{(A - B)^2} = {A^2} - BA + {B^2}\]
已知`\A,B`为三阶矩阵,且满足`\2A^{ - 1}B = B - 4E`,其中\[B = \left[ {\begin{array}{*{20}{c}} 1&{ - 2}&0\\ 1&2&0\\ 0&0&2 \end{array}} \right]\],则矩阵`\A=` ( )
A. \[\left[ {\begin{array}{*{20}{c}}0&2&0\\{ - 1}&{ - 1}&0\\0&0&{ - 2}\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}0&2&0\\ 1&{ - 1}&0\\0&0&{ - 2}\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}0&2&0\\{ - 1}&{ - 1}&0\\0&0&{ - 3}\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}0&1&0\\{ - 1}&{ - 1}&0\\0&0&{ - 2}\end{array}} \right]\]
设`\A,B`为同阶可逆方阵,则 ( )
A. \[AB = BA\]
B. 存在可逆方阵`\P,Q`,使`\PAQ = B`
C. 存在可逆方阵`\P`,使`\P^{-1}AP = B`
D. 存在可逆方阵`\C`,使`\C^TAC = B`
已知`n`维向量组`\alpha_1,\alpha_2,\alpha_3`线性无关,则向量空间`V = { \alpha = k_1\alpha _1 + k_2\alpha _2| k_1,k_2 \in R }`的维数是( )
A. `1;`
B. `2;`
C. `3;`
D. `4.`