题目内容

设\[A = \left[ {\begin{array}{*{20}{c}} 1&0&1\\ 0&2&0\\ 1&0&1 \end{array}} \right]\],若三阶矩阵`\B`满足关系`\AB + E = A^2 + B`,则`\B`的第一行的行为 ( )

A. `\(1,2,0)`
B. `\(2,1,0)`
C. `\(1,0,2)`
D. `\(2,0,1)`

查看答案
更多问题

矩阵\[A = \left[ {\begin{array}{*{20}{c}} 1&1&{ - 1}\\ { - 1}&1&1\\ 1&{ - 1}&1 \end{array}} \right]\] ,矩阵`\X`满足`\A^ ** X = A^{ - 1} + 2X`,其中`\A^**`是`\A`的伴随矩阵,则`\X=` ( )

A. \[\frac{1}{2}\left[ {\begin{array}{*{20}{c}}1&1&0\\0&1&1\\1&0&1\end{array}} \right]\]
B. \[\frac{1}{4}\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&1\\0&1&1\end{array}} \right]\]
C. \[\frac{1}{4}\left[ {\begin{array}{*{20}{c}}1&1&0\\0&1&1\\1&0&1\end{array}} \right]\]
D. \[\frac{1}{2}\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&1\\0&1&1\end{array}} \right]\]

设`\A,B`均为`\n`阶方阵,`\A \ne 0`,且`\AB = 0`,则下述结论必成立的是 ( )

A. \[BA = 0\]
B. \[B = 0\]
C. \[(A + B)(A - B) = {A^2} - {B^2}\]
D. \[{(A - B)^2} = {A^2} - BA + {B^2}\]

已知`\A,B`为三阶矩阵,且满足`\2A^{ - 1}B = B - 4E`,其中\[B = \left[ {\begin{array}{*{20}{c}} 1&{ - 2}&0\\ 1&2&0\\ 0&0&2 \end{array}} \right]\],则矩阵`\A=` ( )

A. \[\left[ {\begin{array}{*{20}{c}}0&2&0\\{ - 1}&{ - 1}&0\\0&0&{ - 2}\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}0&2&0\\ 1&{ - 1}&0\\0&0&{ - 2}\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}0&2&0\\{ - 1}&{ - 1}&0\\0&0&{ - 3}\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}0&1&0\\{ - 1}&{ - 1}&0\\0&0&{ - 2}\end{array}} \right]\]

设`\A,B`为同阶可逆方阵,则 ( )

A. \[AB = BA\]
B. 存在可逆方阵`\P,Q`,使`\PAQ = B`
C. 存在可逆方阵`\P`,使`\P^{-1}AP = B`
D. 存在可逆方阵`\C`,使`\C^TAC = B`

答案查题题库