已知`\A,B`为三阶矩阵,且满足`\2A^{ - 1}B = B - 4E`,其中\[B = \left[ {\begin{array}{*{20}{c}} 1&{ - 2}&0\\ 1&2&0\\ 0&0&2 \end{array}} \right]\],则矩阵`\A=` ( )
A. \[\left[ {\begin{array}{*{20}{c}}0&2&0\\{ - 1}&{ - 1}&0\\0&0&{ - 2}\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}0&2&0\\ 1&{ - 1}&0\\0&0&{ - 2}\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}0&2&0\\{ - 1}&{ - 1}&0\\0&0&{ - 3}\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}0&1&0\\{ - 1}&{ - 1}&0\\0&0&{ - 2}\end{array}} \right]\]
查看答案
设`\A,B`为同阶可逆方阵,则 ( )
A. \[AB = BA\]
B. 存在可逆方阵`\P,Q`,使`\PAQ = B`
C. 存在可逆方阵`\P`,使`\P^{-1}AP = B`
D. 存在可逆方阵`\C`,使`\C^TAC = B`
已知`n`维向量组`\alpha_1,\alpha_2,\alpha_3`线性无关,则向量空间`V = { \alpha = k_1\alpha _1 + k_2\alpha _2| k_1,k_2 \in R }`的维数是( )
A. `1;`
B. `2;`
C. `3;`
D. `4.`
设`\alpha = (1,0,2,3),\beta = (3,4,5,1),A = \alpha ^T\beta`,则矩阵`A`的秩`R(A)`为( )
A. `1;`
B. `2;`
C. `3;`
D. `4.`
已知三维向量组`\alpha_1,\alpha_2,\alpha_3`线性无关,则向量组`\alpha _1 - \alpha _2, \alpha _2 + k\alpha _3, \alpha _3 - \alpha _1`线性无关的充要条件是( )
A. `k=1;`
B. `k\ne 1;`
C. `k=-1;`
D. `k\ne -1.`