题目内容

3.$\underset{x\to +\infty }{\mathop{\lim }}\,\frac{{{\text{e}}^{-{{x}^{2}}}}}{x}\int_{0}^{x}{{{t}^{2}}{{\text{e}}^{{{t}^{2}}}}\,\text{d}t}=$().

A. $\text{e}$
B. $\frac{\text{e}}{2}$
C. $1$
D. $\frac{1}{2}$

查看答案
更多问题

4.设函数$f(x)$在区间$[0,\ 1]$上连续,且满足$f(0)=1,\ f(1)=2$,则$\underset{n\to \infty }{\mathop{\lim }}\,\int_{0}^{1}{{{x}^{n}}f(x)\text{d}x}$().

A. 等于$2$
B. 等于$1$
C. 等于$0$
D. 不存在

5.$\int_{\,0}^{\,\,1}{\frac{\text{d}x}{{{\text{e}}^{x}}+{{\text{e}}^{-x}}}=}$().

A. $\arctan \text{e}+\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$
B. $\arctan \text{e}-\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$
C. $\arctan \text{e}+\frac{\text{ }\!\!\pi\!\!\text{ }}{4}$
D. $\arctan \text{e}-\frac{\text{ }\!\!\pi\!\!\text{ }}{4}$

6.$\int_{0}^{1}{\frac{\arcsin \sqrt{x}}{\sqrt{x(1-x)}}\,\,\text{d}x}$().

A. ${{\left( \frac{\text{ }\!\!\pi\!\!\text{ }}{2} \right)}^{2}}$
B. $\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$
C. ${{\left( \frac{\text{ }\!\!\pi\!\!\text{ }}{4} \right)}^{2}}$
D. $\frac{\text{ }\!\!\pi\!\!\text{ }}{4}$

4.设$S(x)=\sum\limits_{n=1}^{\infty }{{{(-1)}^{n-1}}n(n+1){{x}^{n}}}$,$x\in (-1,\ 1)$,则$S(\frac{1}{2})=$().

A. $\frac{18}{64}$
B. $\frac{27}{64}$
C. $\frac{4}{27}$
D. $\frac{8}{27}$

答案查题题库