题目内容

设某天平的测量值服从正态分布N($\mu,\frac{1}{8} $),用该天平测量物体甲与物体乙的质量,分别独立地测量4次,测得的 平均质量分别为5.5克与5.2克,则两物体质量差置信水平0.95的置信区间为()

A. $(0.3 - \frac{1}{8}{u_{0.975}},0.3 + \frac{1}{8}{u_{0.975}})$
B. $(0.3 - \frac{1}{8}{u_{0.625}},0.3 + \frac{1}{8}{u_{0.625}})$
C. $(0.3 - \frac{1}{4}{u_{0.975}},0.3 + \frac{1}{4}{u_{0.975}})$
D. $(0.3 - \frac{1}{}{u_{0.625}},0.3 + \frac{1}{4}{u_{0.625}})$

查看答案
更多问题

样本${X_1},{X_2},{X_3},{X_4}$来自 正态总体N($\mu,1$),样本均值 $\overline X $是$\mu $的一个点估计,[$\overline X -1,\overline X +1]$为$\mu $的一个区间估计。则$P(\mu\in \overline X -1,\overline X +1])$

A. $0.8674$
B. $0.3456$
C. $0.2156$
D. $0.9544$

设随机变量X~t(n),则$Y=\frac{1}{{{X^2}}}$=

A. ${\rm{F}}({n^2},1)$
B. ${\rm{F}}(n,{1})$
C. ${\rm{F}}({n^2},2)$
D. ${\rm{F}}({n},2)$

设${{\rm{X}}_1},{{\rm{X}}_2},...,{{\rm{X}}_9},{{\rm{Y}}_1},{{\rm{Y}}_2},{{\rm{Y}}_9}$,为来自正态总体的简单随机样本,$\frac{{{{\rm{X}}_1}{\rm{ + }}{{\rm{X}}_2}{\rm{ + }}...{\rm{ + }}{{\rm{X}}_9}}}{{\sqrt {{{\rm{Y}}^2}_1{\rm{ + }}{{\rm{Y}}^2}_2{\rm{ + }}...{\rm{ + }}{{\rm{Y}}^2}_9} }}$服从的分布为

A. $t(6)$
B. $t(3)$
C. $t(9)$
D. $t(2)$

设${{\rm{X}}_1},{{\rm{X}}_2},{{\rm{X}}_3},{{\rm{X}}_4}$相互独立,都服从N(0,4),$X = a{({X_1} - 2{X_2})^2} + b{(3{X_3} - 4{X_4})^2}$,$a,b$为何值时,X服从卡方分布。

A. $a=\frac{1}{20},b=\frac{1}{100}$
B. $a=\frac{1}{20},b=\frac{1}{150}$
C. $a=\frac{1}{50},b=\frac{1}{100}$
D. $a=\frac{1}{50},b=\frac{1}{150}$

答案查题题库