题目内容

设`n` 阶矩阵`A=(a_{ij})`的特征值为`\lambda_1,\lambda_2,\cdots,\lambda_n`则\[\sum\limits_{k = 1}^n \lambda _k^2 = (\ \ )\]

A. \[\sum\limits_{i = 1}^n a _{ii}^2;\]
B. \[ (\sum\limits_{i = 1}^n a _{ii} )^2;\]
C. \[\sum\limits_{i = 1}^n\sum\limits_{j = 1}^n a _{ij}^2;\]
D. \[\sum\limits_{i = 1}^n\sum\limits_{j = 1}^n a _{ij}.\]

查看答案
更多问题

设`A`是三阶实对称矩阵,` A `的特征值为`\lambda_1=\lambda_2=1,\lambda_3=-1` ,则`A^{2018}=`( )

A. `3A`;
B. `\frac{1}{3}A`;
C. `E`;
D. `-E`。

行列式\[D = \left| {\begin{array}{*{20}{c}} 2&1&{ - 3}&{ - 1}\\ 3&1&0&7\\ { - 1}&2&4&{ - 2}\\ 1&0&{ - 1}&5 \end{array}} \right|\]的值为 ( )

A. 17
B. 85
C. -17
D. -85

四阶行列式\[\left| {\begin{array}{*{20}{c}} 4&1&2&4\\ 1&2&0&2\\ {10}&5&2&0\\ 0&1&1&7 \end{array}} \right|\]的值为 ( )

A. -2
B. -1
C. 0
D. 1

设\[D = \left| {\begin{array}{*{20}{c}} 1&2&3&4\\ 0&1&2&5\\ 3&1&1&3\\ 1&1&1&1 \end{array}} \right|\],`\A_{ij}`表示`\D`中`\(i,j)`元素`\(i,j=1,2,3,4)`的代数余子式,则`\A_21+A_22+A_23+A_24=` ( )

A. -2
B. -1
C. 0
D. 1

答案查题题库