已知`\a=(1,1,1)`,则`\|a^Ta|=` ( )
查看答案
设3阶矩阵`\A = (alpha _1,alpha _2,alpha _3),B = (alpha _2-2alpha _3,alpha _1,alpha _2)`,若`\A`的行列式`\| A | = 2`,则`\ B `的行列式`\| B |= ` ( )
A. -4
B. -2
C. 2
D. 4
设`\A`为`\n`阶方阵,`\A^**`为`\A`的伴随矩阵,且`\| A | = a \ne 0`,则`\| A^**| = ` ( )
A. \[a^{n - 1}\]
B. \[a^n \]
C. \[a^{n + 1}\]
D. \[a^{n + 2}\]
设`\n`阶方阵`\A`经过初等变换后得方阵`\B`,则 ( )
A. \[\left| {\rm{A}} \right| = \left| {\rm{B}} \right|\]
B. \[\left| A \right| \ne \left| B \right|\]
C. \[\left| A \right|\left| B \right| \ge {\rm{0}}\]
D. 若`\| A| = 0`,则`\| B| = 0`
设`\A,B`为`\n`阶矩阵,`\| A | = 2,| B | = - 3`,则`\| | 2A^** || B^T|| = ` ( )
A. \[3 \cdot {2^{2{n^2} + n}}\]
B. \[ - 3 \cdot {2^{2{n^2} + n}}\]
C. \[3 \cdot {2^{2{n^2} - n}}\]
D. \[ - 3 \cdot {2^{2{n^2} - n}}\]