题目内容

设`\A,B`为`\n`阶矩阵,`\| A | = 2,| B | = - 3`,则`\| | 2A^** || B^T|| = ` ( )

A. \[3 \cdot {2^{2{n^2} + n}}\]
B. \[ - 3 \cdot {2^{2{n^2} + n}}\]
C. \[3 \cdot {2^{2{n^2} - n}}\]
D. \[ - 3 \cdot {2^{2{n^2} - n}}\]

查看答案
更多问题

设\[A = \left( {\begin{array}{*{20}{c}} a&b&b\\ b&a&b\\ b&b&a \end{array}} \right)\],`\ A`的伴随阵的秩为1,则( )

A. `\a = b`或`\a + 2b = 0`
B. `\a \ne b`且`\a + 2b = 0`
C. `\a = b`或`\a + 2b \ne 0`
D. `\a \ne b`且`\a + 2b \ne 0`

设`\A`是`\m \times n`矩阵,`\B`是`\n \times m`矩阵,则( )

A. `\m > n`时必有`\| AB | = 0`
B. `\m < n`时必有`\| AB | = 0`
C. `\m > n`时必有`\| AB | \ne 0`
D. `\m < n`时必有`\| AB | \ne 0`

设\[A = \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}\\ {{a_{41}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),B = \left( {\begin{array}{*{20}{c}} {{a_{14}}}&{{a_{13}}}&{{a_{12}}}&{{a_{11}}}\\ {{a_{24}}}&{{a_{23}}}&{{a_{22}}}&{{a_{21}}}\\ {{a_{34}}}&{{a_{33}}}&{{a_{32}}}&{{a_{31}}}\\ {{a_{44}}}&{{a_{43}}}&{{a_{42}}}&{{a_{41}}} \end{array}} \right)\],\[{P_1} = \left( {\begin{array}{*{20}{c}} 0&0&0&1\\ 0&1&0&0\\ 0&0&1&0\\ 1&0&0&0 \end{array}} \right),{P_2} = \left( {\begin{array}{*{20}{c}} 1&0&0&0\\ 0&0&1&0\\ 0&1&0&0\\ 0&0&0&1 \end{array}} \right)\],若`\A`可逆,则`\B^{ - 1} = `( )

A. \[{A^{ - 1}}{P_1}{P_2}\]
B. \[{P_2}{A^{ - 1}}{P_1}\]
C. \[{P_1}{P_2}{A^{ - 1}}\]
D. \[{P_1}{A^{ - 1}}{P_2}\]

已知方阵`\A`满足`\A^3 - 5A + 6E = O`,则`\A^{ - 1} = ` ( )

A. \[\frac{1}{6}(5E - {A^2})\]
B. \[\frac{1}{6}(5E + {A^2})\]
C. \[\frac{1}{6}(5E - A)\]
D. \[\frac{1}{6}(5E + A)\]

答案查题题库