设\[A = \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}\\ {{a_{41}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),B = \left( {\begin{array}{*{20}{c}} {{a_{14}}}&{{a_{13}}}&{{a_{12}}}&{{a_{11}}}\\ {{a_{24}}}&{{a_{23}}}&{{a_{22}}}&{{a_{21}}}\\ {{a_{34}}}&{{a_{33}}}&{{a_{32}}}&{{a_{31}}}\\ {{a_{44}}}&{{a_{43}}}&{{a_{42}}}&{{a_{41}}} \end{array}} \right)\],\[{P_1} = \left( {\begin{array}{*{20}{c}} 0&0&0&1\\ 0&1&0&0\\ 0&0&1&0\\ 1&0&0&0 \end{array}} \right),{P_2} = \left( {\begin{array}{*{20}{c}} 1&0&0&0\\ 0&0&1&0\\ 0&1&0&0\\ 0&0&0&1 \end{array}} \right)\],若`\A`可逆,则`\B^{ - 1} = `( )
A. \[{A^{ - 1}}{P_1}{P_2}\]
B. \[{P_2}{A^{ - 1}}{P_1}\]
C. \[{P_1}{P_2}{A^{ - 1}}\]
D. \[{P_1}{A^{ - 1}}{P_2}\]
查看答案
已知方阵`\A`满足`\A^3 - 5A + 6E = O`,则`\A^{ - 1} = ` ( )
A. \[\frac{1}{6}(5E - {A^2})\]
B. \[\frac{1}{6}(5E + {A^2})\]
C. \[\frac{1}{6}(5E - A)\]
D. \[\frac{1}{6}(5E + A)\]
设`\A`为3阶非零矩阵,当`\A^T = A^**`,则`\R(A) = ` ( )
A. 1
B. 2
C. 3
D. 由已知无法确定
设\[A = \left( {\begin{array}{*{20}{c}} 2&1&{ - 2}\\ 5&2&0\\ 3&a&4 \end{array}} \right)\],`\B`是3阶非零的矩阵,且`\AB=O`,则`\a=` ( )
A. \[\frac{4}{7}\]
B. \[\frac{3}{5}\]
C. \[\frac{4}{5}\]
D. \[\frac{3}{7}\]
设矩阵`\A,B`满足`\AB = A + 2B`,其中\[A = \left[ {\begin{array}{*{20}{c}} 5&2&0\\ 1&3&0\\ 0&0&4 \end{array}} \right]\],则矩阵`\B=` ( )
A. \[\left[ {\begin{array}{*{20}{c}}3&4&0\\{ - 2}&3&0\\0&0&1\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}3&4&0\\{ - 2}&7&0\\0&0&2\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}3&{ - 4}&0\\{ - 2}&3&0\\0&0&2\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}3&{ - 4}&0\\{ - 2}&7&0\\0&0&2\end{array}} \right]\]