松江A、B两所大学某学期期末高等数学采用同一套题目,A校认为该校学生高数考试成绩比B校学生成绩高10分以上。为了验证这个说法, 主管部门从A校随机抽取75人作为样本,测得其分数平均值为78.6分,标准差为8.2分;B校抽取了80个同学作为随机样本,测得分数平均值为73.8分, 标准差为7.4分,则在99%把握下确定两校平均分之差的的置信区间为()
A. $(1.56,8.04)$
B. $(3.42,7.68)$
C. $(1,7)$
D. $(2.45,6.58)]$
查看答案
岩石密度的测量误差服从正态分布,随机抽测12个样品,得s=0.2,则${\sigma^2}$的置信区间为($\alpha$()
A. $(0.02,0.10)$
B. $(0.01,0.09)$
C. $(0.01,0.11)$
D. $(0.03,0.15)$
某厂分别从两条流水生产线上抽取样本${X_1},{X_2},...,{X_{12}}$,及${Y_1},{Y_2},...,{Y_{12}}$ 测得$\overline X$ =10.6(克),$\overline Y$ =9.5(克),$s_1^2$ =2.4,$s_2^2$=4.7,设两个正态总体的均值为${\mu_1}$和${\mu_2}$ 且有相同方差,则${\mu_1}-{\mu_2}$的置信度95%的置信区间为()
A. $(0,1)$
B. $(-0,1)$
C. $(-0.40,2.60)$
D. $(-1,1)$
为了了解灯泡使用时数均值$\mu$和标准差$\sigma$,测量了10个灯泡,得$\overline X $ =1650小时,s=20小时。如果已知灯泡使用时间服从正态分布,则$\sigma$ 的95%的置信区间为()
A. $(21,40)$
B. $(13.8,36.5)$
C. $(34,59)$
D. $(45,67)$
设某电子元件的寿命服从正态分布N($\mu,{\theta^2}$),抽样检查10个元件,得样本均值$\overline X$ = 1200(h),样本标准差s=14(h),则总体均值$\mu$置信水平为99%的置信区间为()
A. $1200 - \frac{{14}}{{\sqrt {10} }}{t_{0.005}}(9),1200 + \frac{{14}}{{\sqrt {10} }}{t_{0.005}}(9))$
B. $1200 - \frac{{5}}{{\sqrt {11} }}{t_{0.005}}(9),1200 + \frac{{5}}{{\sqrt {11} }}{t_{0.005}}(9))$
C. $1200 - \frac{{8}}{{\sqrt {11} }}{t_{0.005}}(9),1200 + \frac{{8}}{{\sqrt {11} }}{t_{0.005}}(9))$
D. $1200 - \frac{{7}}{{\sqrt {10} }}{t_{0.005}}(9),1200 + \frac{{7}}{{\sqrt {10} }}{t_{0.005}}(9))$