设\[A = \left( {\begin{array}{*{20}{c}} 1&0&1\\ 0&2&0\\ 2&0&1 \end{array}} \right)\]满足`\A^2B - A - B = E`,则`\|B|=` ( )
A. 0
B. \[\frac{1}{2}\]
C. 1
D. 2
查看答案
设矩阵\[A = \left( {\begin{array}{*{20}{c}} 1&2&{ - 2}\\ 4&t&3\\ 3&{ - 1}&1 \end{array}} \right)\],矩阵`\B`为3阶非零矩阵,且`\AB=0`,则`\t=` ( )
A. -4
B. -3
C. -2
D. 1
设矩阵为\[\left( {\begin{array}{*{20}{c}} 1&{ - 2}&{ - 1}&0&2\\ { - 2}&4&2&6&{ - 6}\\ 2&{ - 1}&0&2&3\\ 3&3&3&3&4 \end{array}} \right)\]则其的秩 ( )
A. 1
B. 2
C. 3
D. 4
设四阶矩阵\[B = \left( {\begin{array}{*{20}{c}} 1&{ - 1}&0&0\\ 0&1&{ - 1}&0\\ 0&0&1&{ - 1}\\ 0&0&0&1 \end{array}} \right),C = \left( {\begin{array}{*{20}{c}} 2&1&3&4\\ 0&2&1&3\\ 0&0&2&1\\ 0&0&0&2 \end{array}} \right)\] 且矩阵`\A`满足关系式`\A[ E - C^{ - 1}B ]^TC^T = E`,其中`\E`为四阶单位矩阵,则矩阵`\A=` ( )
A. \[\left( {\begin{array}{*{20}{c}}1&0&0&0\\{ - 2}&1&0&0\\1&{ - 2}&1&0\\0&1&{ - 2}&1\end{array}} \right)\]
B. \[\left( {\begin{array}{*{20}{c}}1&0&0&0\\{ - 2}&1&0&0\\1&{ - 2}&1&0\\1&1&{ - 2}&1\end{array}} \right)\]
C. \[\left( {\begin{array}{*{20}{c}}1&0&0&0\\2&1&0&0\\1&2&1&0\\0&1&2&1\end{array}} \right)\]
D. \[\left( {\begin{array}{*{20}{c}}1&0&0&0\\{ - 2}&1&0&0\\{ - 1}&{ - 2}&1&0\\0&{ - 1}&{ - 2}&1\end{array}} \right)\]
设`\A,B`均为`\n`阶正交矩阵,则下列矩阵中不是正交阵的是 ( )
A. \[A{B^{ - 1}}\]
B. \[kA(\left| k \right| = 1)\]
C. \[{A^*}\]
D. \[A - B\]