题目内容

试证明:
设f(x)定义在可测集E上.若f2(x)在E上可测,且{x∈E:f(x)>0}是可测集,则f(x)在E上可测.

查看答案
更多问题

试证明:
设f(x)是定义在区间[a,b]上的单调函数,则f(x)是[a,b]上的可测函数.

试问:fn(x)=(cosx)n在[0,π]上依测度收敛于0吗?又函数列
在[0,1]上依测度收敛于0吗?

设f(x),fk(x)(k=1,2,…)是E上实值可测函数,若对任给ε>0,以及δ>0,存在E中可测子集e以及K,使得m(E\e)<δ,且有
|fk(x)-f(x)|<ε (k>K,x∈e).
试问这是哪种意义下的收敛?

试证明:
设f(x)是(0,∞)上的可测函数,则F(x,y)=f(y/x)在(0,∞)×(0,∞)上可测.

答案查题题库