曲线 $y=\cos x$ 上点 $\left(\displaystyle\frac{\pi}{3},\frac{1}{2}\right)$ 处的切线方程为( ).
A. $\displaystyle\frac{2\sqrt3}{3}x-y+\displaystyle\frac{1}{2}-\displaystyle\frac{2\sqrt3}{9}\pi=0$
B. $\displaystyle\frac{\sqrt3}{2}x+y-\displaystyle\frac{1}{2}\left(1+\displaystyle\frac{\sqrt3}{3}\pi\right)=0$
C. $-\displaystyle\frac{\sqrt3}{2}x+y-\displaystyle\frac{1}{2}\left(1+\displaystyle\frac{\sqrt3}{3}\pi\right)=0$
D. $\displaystyle\frac{2\sqrt3}{3}x+y+\displaystyle\frac{1}{2}-\displaystyle\frac{2\sqrt3}{9}\pi=0$
查看答案
设 $y=\displaystyle\frac{1}{\sqrt x}$,则 $y'=$( ).
A. $-\displaystyle\frac{1}{x}$
B. $-\displaystyle\frac{1}{2}x^{\frac1{2}}$
C. $-\displaystyle\frac{1}{2}x^{-\frac{3}{2}}$
D. $2x^{\frac1{2}}$
曲线 $y=\ln(1-x^2)$ 在点 $(0,0)$ 处的曲率 $K=$______ .
曲线 $y=e^x$ 在 $x=0$ 处的曲率半径 $\rho=$( ).
A. $\sqrt 2$
B. $2\sqrt 2$
C. $\displaystyle\frac{1}{\sqrt 2}$
D. $\displaystyle\frac{1}{2\sqrt 2}$