排列`\n(n - 1) \cdots 321`的逆序数为 ( )
A. \[\frac{1}{2}n(n - 1)\]
B. \[\frac{1}{2}n(n + 1)\]
C. \[\frac{1}{2}{n^2}\]
D. \[\frac{1}{2}n(n - 2)\]
查看答案
五阶行列式的项`\a_{31}a_{25}a_{14}a_{43}a_{52}`的符号为 ( )
A. 正号
B. 负号
已知行列式\[\left| {\begin{array}{*{20}{c}} 1&2&3&4\\ 2&{10}&{ - 1}&{ - 1}\\ 1&{ - 3}&5&{ - 1}\\ 7&6&{ - 1}&1 \end{array}} \right|\],则`\A_{13} + A_{21} = ` ( )
A. 7
B. 8
C. 9
D. 10
\[{D_n} = \left| {\begin{array}{*{20}{c}} 0&{}&{}&{ - 1}\\ {}&{}&{ - 1}&{}\\ {}& {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} &{}&{}\\ { - 1}&{}&{}&0 \end{array}} \right|\],要使`\D_n`小于零,n应该为( )
A. 3
B. 4
C. 5
D. 7
设多项式\[f(x) = \left| {\begin{array}{*{20}{c}} {{a_{11}} + x}&{{a_{12}} + x}&{{a_{13}} + x}&{{a_{14}} + x}\\ {{a_{21}} + x}&{{a_{22}} + x}&{{a_{23}} + x}&{{a_{24}} + x}\\ {{a_{31}} + x}&{{a_{32}} + x}&{{a_{33}} + x}&{{a_{34}} + x}\\ {{a_{41}} + x}&{{a_{42}} + x}&{{a_{43}} + x}&{{a_{44}} + x} \end{array}} \right|\],则多项式的次数最多为( )
A. 1
B. 2
C. 3
D. 4