题目内容

\[{D_n} = \left| {\begin{array}{*{20}{c}} 0&{}&{}&{ - 1}\\ {}&{}&{ - 1}&{}\\ {}& {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} &{}&{}\\ { - 1}&{}&{}&0 \end{array}} \right|\],要使`\D_n`小于零,n应该为( )

A. 3
B. 4
C. 5
D. 7

查看答案
更多问题

设多项式\[f(x) = \left| {\begin{array}{*{20}{c}} {{a_{11}} + x}&{{a_{12}} + x}&{{a_{13}} + x}&{{a_{14}} + x}\\ {{a_{21}} + x}&{{a_{22}} + x}&{{a_{23}} + x}&{{a_{24}} + x}\\ {{a_{31}} + x}&{{a_{32}} + x}&{{a_{33}} + x}&{{a_{34}} + x}\\ {{a_{41}} + x}&{{a_{42}} + x}&{{a_{43}} + x}&{{a_{44}} + x} \end{array}} \right|\],则多项式的次数最多为( )

A. 1
B. 2
C. 3
D. 4

设x,y为实数且\[\left| {\begin{array}{*{20}{c}} x&y&0\\ { - y}&x&0\\ 0&x&1 \end{array}} \right| = 0\],则( )

A. \[x = 0,y = 1\]
B. \[x = - 1,y = 1\]
C. \[x = 1,y = - 1\]
D. \[x = 0,y = 0\]

设\[D = \left| {\begin{array}{*{20}{c}} 0&{\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1m}}}\\ {{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2m}}}\\ \vdots & \vdots & \ldots & \vdots \\ {{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mm}}} \end{array}}\\ {\begin{array}{*{20}{c}} {{b_{11}}}&{{b_{12}}}& \ldots &{{b_{1n}}}\\ {{b_{21}}}&{{b_{22}}}& \ldots &{{b_{2n}}}\\ \vdots & \vdots & \ldots & \vdots \\ {{b_{n1}}}&{{b_{n2}}}& \ldots &{{b_{nn}}} \end{array}}&{\begin{array}{*{20}{c}} {{c_{11}}}&{{c_{12}}}& \ldots &{{c_{1m}}}\\ {{c_{21}}}&{{c_{22}}}& \ldots &{{c_{2m}}}\\ \vdots & \vdots & \ldots & \vdots \\ {{c_{n1}}}&{{c_{n2}}}& \ldots &{{c_{nm}}} \end{array}} \end{array}} \right|\], 且\[\left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1m}}}\\ {{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2m}}}\\ \vdots & \vdots & \ldots & \vdots \\ {{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mm}}} \end{array}} \right| = a,\left| {\begin{array}{*{20}{c}} {{b_{11}}}&{{b_{12}}}& \ldots &{{b_{1n}}}\\ {{b_{21}}}&{{b_{22}}}& \ldots &{{b_{2n}}}\\ \vdots & \vdots & \ldots & \vdots \\ {{b_{n1}}}&{{b_{n2}}}& \ldots &{{b_{nn}}} \end{array}} \right| = b\] ,则`\D=`( )

A. \[{( - 1)^{mn}}(a + b)\]
B. \[{( - 1)^{mn}}ab\]
C. \[ab\]
D. \[{( - 1)^{m + n}}ab\]

设\[f(x) = \left| {\begin{array}{*{20}{c}} 5&4&3&2&x&0\\ 4&3&2&{ - x}&0&0\\ 3&2&x&0&0&0\\ 2&{ - x}&0&0&0&0\\ x&0&0&0&0&0\\ 0&0&0&0&0&6 \end{array}} \right|\],则`\x^5`的系数为( )

A. 3
B. 4
C. 5
D. 6

答案查题题库