若\(X\sim N(\mu,\sigma^2)\),则其分布函数\(F_X(x)=P\{X\le x\}=P\left\{\dfrac{X-\mu}{\sigma}\le \dfrac{x-\mu}{\sigma}\right\}\),而\(\dfrac{X-\mu}{\sigma}\sim N(0,1)\),于是\(F_X(x)=\varPhi(\dfrac{x-\mu}{\sigma})\).
查看答案
积分\(\int_0^1{e^{\frac{{-x^2}}{2}}dx}\)可通过标准正态分布的分布函数化为:\(\sqrt{2\pi}\left[\varPhi(1)-\varPhi(0)\right]\),然后查表得到。
若随机变量\(X\sim N(\mu,\sigma^2)\) ,则\(P\left\{\left|\dfrac{X-\mu}{\sigma}\right|\lt 1\right\}\)随\(\sigma\)的增大而
A. 增大
B. 减小
C. 不变
D. 条件不足,无法判断
若随机变量\(X\sim N(\mu_1,\sigma_1^2)\) ,\(Y\sim N(\mu_2,\sigma_2^2)\),且\(P\{|X-\mu_1|\lt 1\}\lt P\{|Y-\mu_2|\lt 1\}\) ,则有:\(\sigma_1\lt \sigma_2\). (改编自2006研考题)
设随机变量\(X\)有分布律\begin{array}{c|cccc}X&-2&-1&0&1\\\hline p_k&0.1&0.2&0.3&0.4\end{array}若\(Y=X^2\),则\(Y\)的所有可能取值有
A. 0
B. 1
C. 2
D. 3
E. 4