若随机变量\(X\sim N(\mu_1,\sigma_1^2)\) ,\(Y\sim N(\mu_2,\sigma_2^2)\),且\(P\{|X-\mu_1|\lt 1\}\lt P\{|Y-\mu_2|\lt 1\}\) ,则有:\(\sigma_1\lt \sigma_2\). (改编自2006研考题)
查看答案
设随机变量\(X\)有分布律\begin{array}{c|cccc}X&-2&-1&0&1\\\hline p_k&0.1&0.2&0.3&0.4\end{array}若\(Y=X^2\),则\(Y\)的所有可能取值有
A. 0
B. 1
C. 2
D. 3
E. 4
若\(X\)的分布律为:\(P\{X=k\}=p(1-p)^{k-1},k=1,2,3,\ldots\),则以下选项正确的有:
A. \(P\{X\gt m+n|X>m\}=P\{X\gt n\}\)
B. \(X\sim b(n,p)\)
C. \(P\{X\gt n\}=(1-p)^{n-1}\)
D. \(P\{X\gt n\}=(1-p)^n\)
若随机变量\(X\)的分布函数\(F(x)=\left\{\begin{array}{cc}\dfrac{1}{1+x^2},&x\lt 0,\\1&x\ge 0.\\\end{array}\right.\) 则\(X\)是离散型随机变量。
若随机变量\(X\)的分布函数\(F(x)=\left\{\begin{array}{cc}0,&x\lt1,\\0.1,&1\le x\lt 2,\\0.3,&2\le x\lt 4,\\0.6,&4\le x\lt 5,\\1,&x\ge 5.\\\end{array}\right.\) 则\(X\)的分布律为\begin{array}{c|cccc}X&1&2&4&5\\\hline p_k&0.1&0.2&0.3&0.4\end{array}