函数 $\begin{equation}f(x)=\begin{cases}x^2,&0\le x\le1,\\2-x,&1
A. 可去间断点
B. 跳跃间断点
C. 第二类间断点
D. 连续点
查看答案
设 $A$ 为 $n$ 阶方阵, $A^*$为其伴随矩阵,$detA=\frac1{3}$,则 $det\left[\left(\frac1{4}A\right)^{-1}-15A^*\right]=$( ).
A. $3$
B. $-3$
C. $(-1)^n3$
D. $3n$
矩阵 $A=\left(\begin{array}{ccc}0&0&2\\0&5&0\\8&0&0\end{array}\right)$ 的逆矩阵 $A^{-1}=$( ).
A. $\left(\begin{array}{ccc}0&0&\frac1{2}\\0&\frac1{5}&0\\\frac1{8}&0&0\end{array}\right)$
B. $\left(\begin{array}{ccc}0&0&-\frac1{2}\\0&-\frac1{5}&0\\-\frac1{8}&0&0\end{array}\right)$
C. $\left(\begin{array}{ccc}0&0&\frac1{8}\\0&\frac1{5}&0\\\frac1{2}&0&0\end{array}\right)$
D. $\left(\begin{array}{ccc}0&0&-\frac1{8}\\0&-\frac1{5}&0\\-\frac1{2}&0&0\end{array}\right)$
矩阵方程: $\left(\begin{array}{ccc}0&1&0\\1&0&0\\0&0&1\end{array}\right)$$X$$\left(\begin{array}{ccc}1&0&0\\0&0&1\\0&1&0\end{array}\right)$$=\left(\begin{array}{ccc}1&-4&3\\2&0&-1\\1&-2&0\end{array}\right)$, 则 $X=$( ).
A. $\left(\begin{array}{ccc}2&0&-1\\1&-4&3\\1&-2&0\end{array}\right)$
B. $\left(\begin{array}{ccc}1&3&-4\\2&-1&0\\1&0&-2\end{array}\right)$
C. $\left(\begin{array}{ccc}1&-4&3\\2&0&-1\\1&-2&0\end{array}\right)$
D. $\left(\begin{array}{ccc}2&-1&0\\1&3&-4\\1&0&-2\end{array}\right)$
若 $n$ 阶方阵 $A$ 满足方程 $A^2+2A+3E=0$,则 $A^{-1}=$( ).
A. $\displaystyle\frac1{3}(A+2E)$
B. $\displaystyle-\frac1{3}(A+2E)$
C. $\displaystyle\frac1{3}(A+2)$
D. $\displaystyle\frac1{3}(A-2E)$