将二次积分$\displaystyle I=\int_0^1\int_y^{\sqrt{y}}\frac{sinx}{x}dxdy$,交换积分次序,则$I=$
A. $\displaystyle I=\int_0^1\int_{x^2}^x\frac{sinx}{x}dydx$
B. $\displaystyle I=\int_0^1\int_x^{x^2}\frac{sinx}{x}dydx$
C. $\displaystyle I=\int_{-1}^0\int_{x^2}^x\frac{sinx}{x}dydx$
D. $\displaystyle I=\int_{-1}^0\int^{x^2}_x\frac{sinx}{x}dydx$
查看答案
$\displaystyle\lim\limits_{(x,y)\to(0,0)}\frac{3xy}{x^2+y^2}=$
A. $\displaystyle\frac{3}{2}$
B. $0$
C. $\displaystyle\frac{6}{5}$
D. 不存在
二重积分$\displaystyle I=\iint_Dx\sqrt{y}dxdy$,其中$D$是由两条抛物线$y=\sqrt{x},y=x^2$所围成的闭区域, 则积分值$I=$
A. $\displaystyle -\frac{6}{55}$
B. $\displaystyle\frac{6}{55}$
C. $\displaystyle-\frac{3}{11}$
D. $\displaystyle \frac{3}{11}$
曲线$x=t,y=t^2,z=t^3$在点$(1,1,1)$处的切线方程为
A. $\displaystyle x+2y+3z-6=0$
B. $\displaystyle\frac{x-1}{3}=\frac{y-1}{2}=\frac{z-1}{1}$
C. $\displaystyle 3x+2y+z-6=0$
D. $\displaystyle\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{3}$
将$xoz$坐标面上的双曲线$\displaystyle\frac{x^2}{a^2}-\frac{z^2}{c^2}=1$ 绕$z$轴旋转一周所生成的旋转曲面方程为____
A. $\displaystyle\frac{x^2-y^2}{a^2}-\frac{z^2}{c^2}=1 $
B. $\displaystyle\frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=1$
C. $\displaystyle\frac{x^2}{a^2}-\frac{z^2-y^2}{c^2}=1$
D. $\displaystyle\frac{x^2}{a^2}-\frac{z^2+y^2}{c^2}=1$