题目内容
二十、矩阵\(\begin{pmatrix}1&1&1\\2&3&0\\2&1&1\end{pmatrix}\)的QR分解为____。A. \(\begin{pmatrix} \frac{1}{3}&0&-\frac{4}{3\sqrt2}\\ \frac{2}{3}&\frac{1}{\sqrt2}&\frac{1}{3\sqrt2}\\ \frac{2}{3}&-\frac{1}{\sqrt2}&\frac{1}{3\sqrt2} \end{pmatrix} \begin{pmatrix} 3&3&1\\ 0&\sqrt2&-\frac{1}{\sqrt2}\\ 0&0&\frac{1}{\sqrt2} \end{pmatrix}\) B. \(\begin{pmatrix} \frac{1}{3}&0&\frac{4}{3\sqrt2}\\ \frac{2}{3}&\frac{1}{\sqrt2}&-\frac{1}{3\sqrt2}\\ \frac{2}{3}&-\frac{1}{\sqrt2}&-\frac{1}{3\sqrt2} \end{pmatrix} \begin{pmatrix} 3&3&1\\ 0&\sqrt2&-\frac{1}{\sqrt2}\\ 0&0&\frac{1}{\sqrt2} \end{pmatrix}\) C. \(\begin{pmatrix} 1&0&\frac{2}{3}\\ 2&1&-\frac{1}{6}\\ 2&-1&-\frac{1}{6} \end{pmatrix} \begin{pmatrix} 1&1&\frac{1}{3}\\ 0&1&-\frac{1}{2}\\ 0&0&1 \end{pmatrix}\) D. \(\begin{pmatrix} \frac{1}{3}&0&\frac{4}{3\sqrt2}\\ \frac{2}{3}&-\frac{1}{\sqrt2}&-\frac{1}{3\sqrt2}\\ \frac{2}{3}&\frac{1}{\sqrt2}&-\frac{1}{3\sqrt2} \end{pmatrix} \begin{pmatrix} 3&3&1\\ 0&\sqrt2&-\frac{1}{\sqrt2}\\ 0&0&\frac{1}{\sqrt2} \end{pmatrix}\)
查看答案
搜索结果不匹配?点我反馈
更多问题