题目内容

设向量组\[{\alpha _1} = \left( {\begin{array}{*{20}{c}} {1 + \lambda }\\ 1\\ 1 \end{array}} \right),{\alpha _2} = \left( {\begin{array}{*{20}{c}} 1\\ {1 + \lambda }\\ 1 \end{array}} \right),{\alpha _3} = \left( {\begin{array}{*{20}{c}} 1\\ 1\\ {1 + \lambda } \end{array}} \right)\]的秩为2,则`\lambda=`( )

A. `3;`
B. `-3;`
C. `0 `或` -3;`
D. `0 `或` 3.`

查看答案
更多问题

设三阶矩阵\[A = \left( {\begin{array}{*{20}{c}} 1&2&{ - 2}\\ 2&1&2\\ 3&0&4 \end{array}} \right)\]向量`\alpha =(a,1,1)^T`,且满足`A\alpha `与`\alpha`线性相关,则`\alpha=`( )

A. `-1;`
B. `-2;`
C. `-3;`
D. `-4.`

设有行列式\[D = \left| {\begin{array}{*{20}{c}} 0&1&2&3\\ 1&2&3&0\\ 2&3&0&1\\ 0&3&1&2 \end{array}} \right|\],`\M_{ij}`表示行列式`\D`的元素`\a_{ij}`的余子式, 则`\M_{31} - 2M_{32} + 3M_{33} - M_{34} = ` ( )

A. -5
B. -2
C. 2
D. 5

\[f(x) = \left| {\begin{array}{*{20}{c}} x&{ - x}&{ - 1}&x\\ 2&2&3&x\\ { - 7}&{10}&4&3\\ 1&{ - 7}&1&x \end{array}} \right|\],其常数项的值 ( )

A. -48
B. -24
C. 24
D. 48

行列式\[D = \left| {\begin{array}{*{20}{c}} 1&1&1&1\\ 2&{{2^2}}&{{2^3}}&{{2^4}}\\ 3&{{3^2}}&{{3^3}}&{{3^4}}\\ 4&{{4^2}}&{{4^3}}&{{4^4}} \end{array}} \right|\]的值 ( )

A. -288
B. -114
C. 114
D. 228

答案查题题库