题目内容

4.$\int_{0}^{2}{\frac{dx}{\sqrt{\left| 1-x \right|}}}=$( )

A. $0$
B. $2$
C. $4$
D. $6$

查看答案
更多问题

3.$\int_{0}^{+\infty }{\frac{\ln x}{{{(1+x)}^{2}}}}dx=$( )

A. $0$
B. $1$
C. $2$
D. $4$

2.$\int_{-\infty }^{+\infty }{\frac{dx}{{{x}^{2}}+4x+9}}=$( )

A. $\frac{\pi }{3}$
B. $\frac{\pi }{2}$
C. $\frac{\pi }{\sqrt{13}}$
D. $\frac{\pi }{\sqrt{5}}$

1.$\int_{0}^{+\infty }{\frac{1}{{{(1+{{e}^{x}})}^{2}}}dx}=$( )

A. $\ln 2+\frac{1}{2}$
B. $\ln 2-\frac{1}{2}$
C. $\ln 2+\frac{1}{4}$
D. $\ln 2-\frac{1}{4}$

9.$\int_{{}}^{{}}{\frac{xdx}{(1+{{x}^{2}})\sqrt{1-{{x}^{2}}}}}=$()。

A. $-\frac{1}{2\sqrt{2}}\ln \left| \frac{\sqrt{2}+\sqrt{1-{{x}^{2}}}}{\sqrt{2}-\sqrt{1-{{x}^{2}}}} \right|+C$
B. $-\frac{1}{2\sqrt{2}}\ln \left| \frac{\sqrt{2}+(1+{{x}^{2}})}{\sqrt{2}-\sqrt{1-{{x}^{2}}}} \right|+C$
C. $-\frac{1}{2\sqrt{2}}\ln \left| \frac{\sqrt{2}-(1+{{x}^{2}})}{\sqrt{2}-\sqrt{1-{{x}^{2}}}} \right|+C$
D. $-\frac{1}{2\sqrt{2}}\ln \left| \frac{\sqrt{2}+\sqrt{1+{{x}^{2}}}}{\sqrt{2}-\sqrt{1+{{x}^{2}}}} \right|+C$

答案查题题库