设方阵`\A`满足`\A^2 - A - 2E = 0`,则`\A^{-1}=` ( )
A. \[\frac{1}{2}(A - E)\]
B. \[\frac{1}{2}(A + E)\]
C. \[\frac{1}{4}(A - E)\]
D. \[\frac{1}{4}(A + E)\]
查看答案
设矩阵`\A,B,C`,\[B=\left[ {\begin{array}{*{20}{c}}1&2&{-3}&{-2}\\0&1&2&{-3}\\0&0&1&2\\0&0&0&1\end{array}} \right],C=\left[ {\begin{array}{*{20}{c}}1&2&0&1\\0&1&2&0\\0&0&1&2\\0&0&0&1\end{array}} \right]\],且矩阵`\A,B,C`满足`\(2E-C^{-1}B)A^T=C^{-1}`,则矩阵`\A=` ( )
A. \[\left[ {\begin{array}{*{20}{c}}1&0&0&0\\2&1&0&0\\1&2&1&0\\0&1&2&1\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}1&0&0&0\\{ - 2}&1&0&0\\1&{ - 2}&1&0\\0&1&{ - 2}&1\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}1&0&0&0\\{ - 2}&1&0&0\\{ - 1}&{ - 2}&1&0\\0&{ - 1}&{ - 2}&1\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}1&0&0&0\\{ - 2}&1&0&0\\1&{ - 2}&1&0\\1&1&{ - 2}&1\end{array}} \right]\]
与矩阵 \[ \left( {\begin{array}{*20{c}} 1&0&0\\ 0&1&0\\ 0&0&2 \end{array}} \right) 相似的矩阵是(\ \ ) \]
A. \[ \left( {\begin{array}{*20{c}}1&1&0\\0&1&0\\0&0&2\end{array}} \right);\]
B. \[ \left( {\begin{array}{*20{c}}1&0&0\\0&1&1\\0&0&2\end{array}} \right);\]
C. \[\left( {\begin{array}{*20{c}}1&1&1\\0&1&0\\0&0&2\end{array}} \right);\]
D. \[\left( {\begin{array}{*20{c}}1&0&0\\1&1&0\\1&-1&2\end{array}} \right).\]
设\[A = \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}\\ {{a_{41}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),B = \left( {\begin{array}{*{20}{c}} {{a_{14}}}&{{a_{13}}}&{{a_{12}}}&{{a_{11}}}\\ {{a_{24}}}&{{a_{23}}}&{{a_{22}}}&{{a_{21}}}\\ {{a_{34}}}&{{a_{33}}}&{{a_{32}}}&{{a_{31}}}\\ {{a_{44}}}&{{a_{43}}}&{{a_{42}}}&{{a_{41}}} \end{array}} \right)\],\[{P_1} = \left( {\begin{array}{*{20}{c}} 0&0&0&1\\ 0&1&0&0\\ 0&0&1&0\\ 1&0&0&0 \end{array}} \right),{P_1} = \left( {\begin{array}{*{20}{c}} 1&0&0&0\\ 0&0&1&0\\ 0&1&0&0\\ 0&0&0&1 \end{array}} \right)\],若`\A`可逆,则`\B^{-1}=` ( )
A. \[{A^{ - 1}}{P_1}{P_2}\]
B. \[{P_2}{A^{ - 1}}{P_1}\]
C. \[{P_1}{P_2}{A^{ - 1}}\]
D. \[{P_1}{A^{ - 1}}{P_2}\]
设`\n`阶方阵`\A`满足`\|A|=2`,`\A^**`是`\A`的伴随阵, 则`\|A^{-1}(A^**+A^{-1})A|=` ( )
A. \[\frac{{\rm{3}}}{{\rm{2}}}\]
B. \[\frac{{\rm{3}}}{{{{\rm{2}}^n}}}\]
C. \[\frac{{{{\rm{3}}^{\rm{n}}}}}{{{{\rm{2}}^n}}}\]
D. \[\frac{{{{\rm{3}}^{\rm{n}}}}}{{\rm{2}}}\]