题目内容

设` \alpha,\beta `为` R^n `中两个非零正交列向量 ,` A=\alpha\beta^T `,则` A `( )

A. 不一定可以相似对角化;
B. 一定可以相似对角化;
C. 一定不可以相似对角化;
D. 以上都不对。

查看答案
更多问题

设\[D = \left| {\begin{array}{*{20}{c}} 1&2&3&4\\ 2&3&4&1\\ 3&4&1&2\\ 4&1&2&3 \end{array}} \right| = \Delta ({a_{{\rm{ij}}}})\],`\A_{ij}`表示元素`\a_{ij}`的代数余子式,则`\A_{14} + 2A_{24} + 3A_{34} + 4A_{44} = ` ( )

A. -1
B. 0
C. 1
D. 2

设n阶行列式`\D = a \ne 0`,且D中的每列的元素之和为b,则行列式D中的第二行的代数余子式之和为( )

A. \[\frac{a}{{{b^2}}}\]
B. \[\frac{{{a^2}}}{b}\]
C. \[\frac{{{a^2}}}{{{b^2}}}\]
D. \[\frac{a}{b}\]

如\[\left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right| = 2\],则\[\left| {\begin{array}{*{20}{c}} {2{a_{11}}}&{2{a_{12}}}&{2{a_{12}} - 2{a_{13}}}\\ {2{a_{21}}}&{2{a_{22}}}&{2{a_{22}} - 2{a_{23}}}\\ {2{a_{31}}}&{2{a_{32}}}&{2{a_{32}} - 2{a_{33}}} \end{array}} \right| = ,\left| {\begin{array}{*{20}{c}} {2{a_{11}}}&{{a_{21}} - 3{a_{11}}}&{{a_{21}} - {a_{31}}}\\ {2{a_{12}}}&{{a_{22}} - 3{a_{12}}}&{{a_{22}} - {a_{32}}}\\ {2{a_{13}}}&{{a_{23}} - 3{a_{13}}}&{{a_{23}} - {a_{33}}} \end{array}} \right| = ,\left| {\begin{array}{*{20}{c}} 0&0&0&2\\ {{a_{11}}}&{{a_{21}}}&{{a_{31}}}&1\\ {{a_{12}}}&{{a_{22}}}&{{a_{32}}}&2\\ {{a_{13}}}&{{a_{23}}}&{{a_{33}}}&3 \end{array}} \right| = \]分别等于( )

A. 16,4,4
B. -16,-4,-4
C. 16,-4,-4
D. -16,4,4

如果\[\left| {\begin{array}{*{20}{c}} a&3&1\\ b&0&1\\ c&2&1 \end{array}} \right| = 1\],则\[\left| {\begin{array}{*{20}{c}} {a - 3}&{b - 3}&{c - 3}\\ 5&2&4\\ 1&1&1 \end{array}} \right| = \]( )

A. 0
B. -1
C. 1
D. -2

答案查题题库