证明:设A是n级矩阵,如果AA=I,则|A|=1或|A|=一1.
查看答案
设A是n级实方阵,n≥3,证明:(1)如果A的每一个元素等于它自己的代数余子式,并且A至少有一个元素不为零,则A是正交矩阵;(2)如果A中每一个元素等于它自己的代数余子式乘以一1,并且A至少有一个元素不为零,则A是正交矩阵.
设s×n矩阵A的秩为r(r>0).证明:存在s×r列满秩矩阵P1与r×n行满秩矩阵Q1,使得A=P1Q1.
设A是实数域上的s×n矩阵,β是R2的任意一个列向量.证明:n元线性方程组AAX=Aβ一定有解.