题目内容

设`\A,B`为同阶可逆方阵,则 ( )

A. \[AB = BA\]
B. 存在可逆阵`\P`,使`\P^{ - 1}AP = B`
C. 存在可逆阵`\C`,使`\C^TAC = B`
D. 存在可逆阵`\P,Q`,使`\PAQ = B`

查看答案
更多问题

设`\A`是`\n`阶可逆方阵,将`\A`的第`\i`行和第`\j`行对换后得到的矩阵记为`\B`,则`\AB^{-1}=` ( )

A. `\E(i,2j)`
B. `\E(i+j,j)`
C. `\E(j-i,j)`
D. `\E(i,j)`

设`\A`是`\4 \times 3`矩阵,且`\A`的秩`\R(A) = 2`,而\[B = \left[ {\begin{array}{*{20}{c}} 1&0&2\\ 0&2&0\\ { - 1}&0&3 \end{array}} \right]\],则`\R(AB) = ` ( )

A. 2
B. 3
C. 4
D. 6

设`\A^**`,`\A^{-1}`分别为`\n`阶方阵`\A`的伴随阵和逆矩阵,则`\|A^**A^{-1}|=` ( )

A. `\|A|^{n+2}`
B. `\|A|^{n-2}`
C. `\|A|^{n-1}`
D. `\|A|^n`

设矩阵\[A = \left[ {\begin{array}{*{20}{c}} 1&0&1\\ 0&2&0\\ 1&0&1 \end{array}} \right]\],矩阵`\X`满足`\AX + E = A^2 + X`,则矩阵`\X=` ( )

A. \[\left[ {\begin{array}{*{20}{c}}2&0&1\\0&3&0\\1&0&2\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}2&0&3\\0&3&0\\1&0&2\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}2&0&1\\0&1&0\\3&0&2\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}2&0&1\\0&3&0\\2&0&2\end{array}} \right]\]

答案查题题库