直线 $\displaystyle\frac{x+3}{-1}=\frac{y+2}{2}=z$ 与平面 $x+y+2z=6$ 的夹角为 .
A. $\displaystyle 0$ ;
B. $\displaystyle\frac{\pi}{2}$ ;
C. $\displaystyle\frac{\pi}{6}$ ;
D. $\displaystyle\frac{\pi}{3}$ .
查看答案
设 $\varOmega$ 是由 $z=x^2+y^2$ 与 $z=4$ 所围成的闭区域,把下列三重积分化为柱面坐标形式的三次积分 $\displaystyle\iiint_{\varOmega}z^2(x^2+y^2)\mathrm{d}x\mathrm{d}y\mathrm{d}z=$ .
A. $\displaystyle\int_0^{2\pi}\mathrm{d}\theta\int_0^2\rho^3\mathrm{d}\rho\int_{\rho}^2z^2\mathrm{d}z$ ;
B. $\displaystyle\int_0^{2\pi}\mathrm{d}\theta\int_0^2\rho^2\mathrm{d}\rho\int_{\rho^2}^4z^2\mathrm{d}z$ ;
C. $\displaystyle\int_0^{2\pi}\mathrm{d}\theta\int_0^2\rho^3\mathrm{d}\rho\int_{\rho^2}^4z^2\mathrm{d}z$ ;
D. $\displaystyle\int_0^{2\pi}\mathrm{d}\theta\int_0^\sqrt{2}\rho^2\mathrm{d}\rho\int_{\rho}^2z^2\mathrm{d}z$ .
二重积分 $\displaystyle I=\iint_D \frac{x^2-2xy+y^2}{x^2+y^2}\mathrm{d}x\mathrm{d}y$,其中$D$是由平面曲线 $x^2+y^2-\sqrt{x^2+y^2}+x=0$ 所围成的有界闭区域,则$I=$ .
A. $\pi$;
B. $\displaystyle\frac{3}{2}\pi$;
C. $\displaystyle\frac{\pi}{2}$;
D. $0$.
设 $L$ 是以 $(0,0),(\pi,0),(\pi,\pi)$ 为顶点的三角形的正向边界,利用格林公式计算曲线积分$\displaystyle\oint_{L}y\mathrm{d}x-3x\mathrm{d}y=$ .
A. $2\pi^2$ ;
B. $-2\pi^2$ ;
C. $4\pi^2$ ;
D. $-4\pi^2$ .
三重积分$\displaystyle I=\iiint_\Omega(x^2+y^2+z^2)dv$,其中$\Omega$是由$z^2=x^2+y^2$与$z=-1$围成的区域,则$I$可化为____
A. $ \int_0^{2\pi}d\theta\int_0^1\rho d\rho\int_0^\rho(\rho^2+z^2)dz$
B. $\displaystyle\int_0^{2\pi}d\theta\int_0^1\rho d\rho\int_\rho^{-1}(\rho^2+z^2)dz$
C. $\displaystyle4\int_0^{\frac{\pi}{2}}d\theta\int_0^1\rho d\rho\int_{-1}^{-\rho}(\rho^2+z^2)dz$
D. $\displaystyle\int_0^{\frac{\pi}{2}}d\theta\int_0^1\rho d\rho\int_\rho^{-1}(\rho^2+z^2)dz$