题目内容

设随机变量\(X\)的概率密度函数\(\phi(x)=\frac{1}{\pi(1+x^2)}\),求随机变量\(Y=aX^2,(a < 0)\)的概率密度函数\(f(y)\)

A. \[ f(y)=\left\{ \begin{aligned} -\frac{1}{\pi(a+y)}\sqrt{\frac{a}{y}} &,& y < 0 \\ 0 &,& y \geq 0 \end{aligned} \right. \]
B. \[ f(y)=\left\{ \begin{aligned} -\frac{1}{\pi(a+y)}\sqrt{\frac{a}{2y}} &,& y < 0 \\ 0 &,& y \geq 0 \end{aligned} \right. \]
C. \[ f(y)=\left\{ \begin{aligned} -\frac{1}{\pi(a+y)}\sqrt{\frac{a}{2y}} &,& y > 0 \\ 0 &,& y \leq 0 \end{aligned} \right. \]
D. 以上答案均不正确

查看答案
更多问题

(2)、若\(Y\)的分布函数为\(F(y)\),则\(F(2)\)的值为

A. \(\frac{2}{5}\)
B. \(\frac{19}{30}\)
C. \(\frac{11}{30}\)
D. \(\frac{4}{15}\)

同时掷n颗均匀骰子,求它们的点数之和的数学期望

A. n/6
B. n
C. (3n)/2
D. (7n)/2

(4)、D(XY)的值为

A. 7/108
B. 1/18
C. 5/108
D. 1/27

(3)、E(XY)的值为

A. 0
B. 1/6
C. 1/3
D. 1/2

答案查题题库