Given a R2 point defined on the canonical x,y axis, i⃗ =(22), what are the coordinates in a new coordinate system with the origin at j⃗ =(11), and axes at 45 degrees? (The rotated first axis will be aligned to (11) in an unrotated coordinate system, with an origin at j⃗ ). Denote this changed vector as k⃗ Enter your answers as numbers.kx=?______ ky=?______
查看答案
The gluLookAt matrix can be summarized as:
A. Scaled followed by Translation followed by Rotation
B. Rotation followed by Scale followed by Translation
C. Translation followed by Rotation
D. Rotation followed by Translation
E. None of the above.
Given that you are doing a 3D rotation operation, \( M=R\left(\vec{a}, \theta\right) \) ,on your vertices, what is the corresponding normal transformation,\( Q \)?
A. \( R(\vec{a},\theta) \)
B. \( R(\vec{a},-\theta) \)
C. \( -R(\vec{a},\theta)\)
D. \( -R(-\vec{a},\theta)\)
E. The result is unpredictable.
F. None of the above.
Using the Rodrigues Rotation Formula, what effect does negating the axis of rotation have?
A. \( R(-\vec{a},\theta) = R(\vec{a},\theta) \)
B. \( R(-\vec{a},\theta) = R(\vec{a},\theta+\pi) \)
C. \( R(-\vec{a},\theta) = -R(\vec{a},\theta) \)
D. \( R(-\vec{a},\theta) = R(\vec{a},-\theta) \)
E. The result is unpredictable.
F. None of the above.
Given a R2 vector, i⃗ =(2.05.0), 对这个向量施加一个350.0度的二维旋转,结果是什么?换句话说,j⃗ =R(350.0)(2.05.0)写出变换后向量j⃗ 的坐标j⃗ x=?______ j⃗ y=?______